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 Abstract: The normalized difference vegetation index (NDVI) from remote sensing (RS) is applied 13 

to mapping homogeneous zones in herbaceous crops or forestry. NDVI has been correlated to total 14 

biomass and leaf area index (LAI). Seasonal and long-term monitoring of LAI can provide an un- 15 

derstanding of dynamic changes within woody crops. Estimation of the density of the vegetation 16 

computed by RS could be implemented by data collected with proximal sensors and this appears 17 

most explicitly in discontinuous soil coverage condition such us a olive orchard. Little is known 18 

about seasonal variation of NDVI in olive orchards and few information are available about its use 19 

in vegetative mapping and LAI estimation. In this paper NDVI calculated during two years were 20 

used to identify areas with different plant vigor. LaiPen sensor was applied to measure transmit- 21 

tance correlated to NDVI index and LAI estimated by canopy sampling. This study indicates that 22 

NDVI index from RS in hedgerow olive orchard along the growing season varies from 0.28 to 0.81 23 

being largely influenced by the natural variation in green coverage of soil. Mapping of effective 24 

differences in olive plant vegetative vigor could be estimated during the summer time. LAI esti- 25 

mated by transmittance 1 m height from the ground explain 80% of variation in LAI estimated by 26 

sampling of the canopy and could be used for mapping the orchard vegetative status. 27 

Keywords: Olea europaea; LAI; unmanned ground vehicle; zonation; LaiPen; super intensive; prox- 28 

imal sensor; transmittance 29 

 30 

1. Introduction 31 

Precision Agriculture, as stated by the International Society of Precision Agriculture 32 

[1] ‘is a management strategy that gathers, processes and analyzes temporal, spatial and 33 

individual data and combines it with other information to support management decisions 34 

according to estimated variability for improved resource use efficiency, productivity, 35 

quality, profitability and sustainability of agricultural production’. Satellite gathered data 36 

can be widely applied to precision farming and sustained efforts have been directed to- 37 

wards obtaining crop bio-physical parameters mostly derived from red (R) and near-in- 38 

frared (NIR) reflectance combinations [2, 3, 4, 5, 6]. The normalized difference vegetation 39 

index (NDVI) among the others vegetation indices obtained from remote sensing (RS) is 40 

nowadays widely applied to mapping homogeneous zones in herbaceous and tree crops 41 

[7, 8, 9]. NDVI has been correlated to total biomass, level of drought and leaf area index 42 

(LAI) [10, 11, 12]. This latter is a dimensionless variable defined by Watson [13] as the total 43 

one-sided area of leaf tissue per unit ground surface area. LAI is a key variable that bridges 44 
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remote sensing observations to the quantification of agroecosystem processes [14]. From 45 

LAI is possible to compute the rate of photosynthesis, evaporation and transpiration, rain- 46 

fall interception, carbon flux and primary productivity of crops. Seasonal and long-term 47 

monitoring of LAI can provide an understanding of dynamic changes within the crops 48 

although the use in olive culture must face several complications compared to herbaceous 49 

crops or forestry [15] which both present continuous vegetal coverage of the soil. The 50 

NDVI data for precision mapping of vegetation growth in olive orchard must face the well 51 

know limitation of this index: lack of sensitivity at high values [1], soil noise [16, 17], and 52 

background soil color differences. Differently from annual herbaceous crops or forestry 53 

olive crop must also face interferences with the natural vegetative growth by periodical 54 

agronomical intervention such us canopies hedging and topping during the spring-sum- 55 

mer season or winter pruning [18]. Moreover, modern hedgerow orchards expose im- 56 

portant proportion of inter-row space, where no canopy covers the soil surface, to satellite 57 

observation. Resolutions obtained from commercial satellite data consist of a mix of can- 58 

opy and inter-row reflectance and could be affected by both leaf distribution and quantity 59 

[19]. Nevertheless, satellite NDVI data could be useful for quick precision mapping of 60 

plant vigor of large olive crop areas giving information about the portions of the orchard 61 

needing specific differential agronomical intervention [20]. Several companies already 62 

provide the agronomist of NDVI maps based on the NDVI index to managing olive groves 63 

but in literature there is a general lack of information about absolute and seasonal varia- 64 

tion of NDVI index in modern olive orchards trained as hedgerow. Since NDVI ranges 65 

from -1 to +1 what do NDVI values represent in terms of plant vigor or vegetative status? 66 

The tuning of the information provided by NDVI to actual vegetative growth or ground- 67 

LAI is of great importance for precision farming [21]. Since NDVI is calculate from zen- 68 

ithal images the estimation of the density of the vegetation computed by RS could be im- 69 

plemented or integrated by data collected with proximal sensors mounted on Unmanned 70 

Ground Vehicle (UGV). UGV are generally considered remote-operated and autonomous 71 

and might be the solution for woody crops monitoring and LAI dynamic changes estima- 72 

tion along the season especially after agronomical interventions such as pruning. The in- 73 

dividuation of a suitable sensor or device to be mounted on UGV is of primarily im- 74 

portance and so is the information about the possible correlation between this ground LAI 75 

estimation not affected by the herbaceous cover crop and NDVI index by which is possible 76 

e.g. to produce also zonation of large areas of cultivated olives. On the market is possible 77 

to find several devices that can be mounted on UGV but not all of them have small size, 78 

with a quick response and not too expensive. We selected for this task the LaiPen LP 110 79 

(Photon Systems Instruments, PSI, Drásov, Czech Republic). Unlike in other similar in- 80 

struments the LaiPen LP 110 is accurate in most daylight conditions and does not require 81 

cloud cover or specific sun angles for its proper performance although no information was 82 

available to our knowledge about its application on olive trees. 83 

With this research we provided the information to extract a reliable vegetative map- 84 

ping of a twelve-hectare super intensive hedgerow olive orchard in central Italy based on 85 

NDVI index. We underlined the most important information to be used for precision ag- 86 

riculture finding correlation between the zonation based on NDVI index and actual LAI 87 

estimated both directly by destructive sampling and indirectly by a commercial sensor for 88 

light transmittance never applied before on olive trees. 89 

2. Materials and Methods 90 

Olive orchard. The research was conducted in Marina di Grosseto (42.735394 N, 91 

10.986208 E - Grosseto, Italy) in a super intensive olive orchard covering approximately 8 92 

ha. Olives were planted in the loamy sand soil in year 2009 at a spacing of 4.0 × 1.6 m and 93 

trained as hedgerow. The area has a typical Mediterranean climate with a mean annual 94 

temperature of 16°C and 740 mm of total rainfall. The olive orchard is managed with su- 95 

perficial soil tillage performed twice a year and drip irrigation. Watering along the period 96 

of the research was done distributing a total of 350 mc of water per hectare year-1 starting 97 



Remote Sens. 2022, 13, x FOR PEER REVIEW 3 of 16 
 

 

at the end of June until the middle of September. The canopies were topped and hedged 98 

in February 2020 before starting the trial, then remained untouched to check the growth 99 

of the LAI index along the two seasons of the research. The orchard was protected against 100 

the main pests so that the color of the vegetation was not affected by any health problem 101 

of the canopies. 102 

NDVI data set. Original data set of NDVI was provided by Greenfield (https://green- 103 

field.farm/en/crop-monitoring/) partner of our group in the LIFE Resilience project. Im- 104 

ages from the Sentinel satellites with a spatial resolution of 10 m were selected and down- 105 

loaded every five days. The images were processed and analyzed performing the atmos- 106 

pheric correction and computing the NDVI values of each pixel. Greenfield, like other 107 

commercial companies, uses the data to produce maps, updated after each satellite acqui- 108 

sition, where different colors point out positive or negative variation within the orchard 109 

Other than absolute values of NDVI the maps highlight the differential between each date 110 

so to indicate the areas with different vegetation behavior as in Figure 1 (b). 111 

 112 

  
(a) (b) 

Figure 1. (a) Satellite image of the rectangular olive orchard interested by this study; (b) map of the 113 
same orchard with area points of different color based on NDVI data from satellite observation. Each 114 
color is related to the class of relative NDVI index: red = very low, orange = low, yellow = middle, 115 
light green = high, dark green = very high. 116 

For our statistical purposes we used the original NDVI dataset provided as a matrix 117 

of values for each geo localized point and each valid date with clear-sky condition. We 118 

used the data collected in the years 2020 and 2021 along the seasonal period of vegetative 119 

growth of the olive in the area that is from middle of March to middle October. Dates with 120 

indexes altered by bad weather conditions were discarded from computing. Production 121 

of fruits in year 2021 was reduced almost to zero in the orchard because of the damages 122 

caused by cold gusty winds during the blossoming, but the yield did not interfere in any 123 

way with canopy shape and vegetative performances. 124 

Indirect LAI estimation. LaiPen LP 100 provides instant readouts of photosynthetic 125 

active radiation (PAR) by a sensor with 400 - 700 nm band pass filter while a second sensor 126 

measures the irradiance at 400 - 500 nm bands. The measurement of solar irradiance below 127 

vegetation canopy is compared to the reference measurement in clear open area to deter- 128 

mine what is called ALAI transmittance. To mimic the possible use of the LaiPen LP 110 129 

device mounted on UGV measurement were taken outside the orchard in absence of pos- 130 

sible interference and then in proximity of each olive canopy. The olive rows are disposed 131 

south-east to north-west (Figure 1a). To achieve a real-time sub-meter-level positioning 132 

accuracy (0.05 m), a dual frequency GNSS receiver (S580, Stonex, Italy) was set to receive 133 

network RTK differential corrections for each LaiPen reading. The receiver was attached 134 

to 3 m pole to make sure that satellite signal was not blocked by trunks and branches. 135 
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Three different measurement of LAI irradiance was taken for each plant at 50, 100 and 150 136 

cm from the ground along the shadow side of each row in the morning. The readings were 137 

quickly recorded with the LaiPen kept along the zenith direction in a sunny day, 22 august 138 

2021, from 9:43 to 9:55 CET. The PAR during the experiment was equal to 955 µmol m2 s-1 139 

while the ALAI value was steady at the maximum level of 4049. The decision to record 140 

the transmittance, not the PAR, only along one side of the row and during the morning 141 

was taken following a preliminary experiment carried out with the purpose to better un- 142 

derstand the function of the LaiPen instrument and the robustness of the results. Since 143 

these details are supplemental but remain crucial to understanding and reproducing the 144 

research, data from preliminary measurements are shown in brief in appendix A. Data 145 

were also taken by LaiPen in sixty positions within the orchard characterized by an in- 146 

creasing NDVI value to check the correlation between the vegetational index calculated 147 

from satellite image and canopy absorbance manually measured on the ground. One sin- 148 

gle reading per each plot was taken in August 23 selecting a single representative plant. 149 

To check the goodness of this single absorbance measurement and whether this could be 150 

representative of the 10 × 10 m plot we also selected three plots within areas with different 151 

NDVI value (respectively equal to 0.28, 0.36 and 0.43) and recorded the absorbance in 18 152 

plants to estimate the possible variation present within a single plot. 153 

Direct LAI estimation. Direct LAI estimation was performed by destructive analysis 154 

of a selected volume of the canopy. For this purpose, a handmade canopy interceptor was 155 

designed and used for the first time. The canopy interceptor (Canceptor©) in Figure 1(a) 156 

was made of two woody frames sliding into metal telescopic guides sustained by concrete 157 

bases. 158 

 159 

  
(a) (b) 

Figure 2. (a) Canopy interceptor with the bases positioned on the two sides of the olive hedgerow. 160 
The frame helps to select a 25 × 25 cm area while the long rods delimit the volume of the canopy to 161 
be sampled; (b) intercepted volume of the canopy. Only the bare shoots are visible after the detach- 162 
ment of all the leaves 163 

Each frame, give support to eight aluminum rods inserted into predisposed holes. By 164 

this device is possible to select a 25 × 25 cm area across the canopy so to identify and detach 165 

all the leaves contained in the whole intercepted volume from one side to the other of the 166 

tree Figure 1 (b). Nine olive plants were selected on the base of their belonging to a differ- 167 

ent NDVI group and classified in areas with plants characterized by low (L) medium (M) 168 

and high (H) vegetation. Two different volumes within each canopy located at 1.00 m and 169 

1.5 m from the ground were selected and the leaves detached. A total of 18 samples of 170 

leaves were collected and for each of them fresh (FW) and dry weight (DW) was recorded 171 

then 100 g FW leaf sample was taken from each unit of volume, put on a plain surface and 172 

photographed. Total area of each 100 g FW sample was determined using ImageJ software 173 

[22] then the dry total leaf area (LA) per unit of DW calculated and estimated for each of 174 

the 18 collected sample. Total LA of each olive plant was finally calculated taking 175 

measures of the canopy in every direction in the space as well as the perpendicular within 176 
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crown area. Finally, the data of the two destructive sampling were averaged and LAI es- 177 

timated for each of the twelve plants. 178 

 179 

Statistics.  180 

Systat 11 statistical program was used to calculate means and standard deviation. To 181 

verify the significance of the data obtained, the t-test (* p ≤ 0.05, ** p ≤ 0.01) were carried 182 

out to compare the mean values of NDVI index. Linear regression with coefficients calcu- 183 

lated by the least squares method were used to compare the LAI estimated directly and 184 

indirectly while ANOVA test was applied to verify the action of each independent varia- 185 

bles on parameters produced by destructive sampling as well as on PAR and transmit- 186 

tance recorded by LaiPen within the preliminary experiment reported in appendix A. 187 

3. Results 188 

3.1. Seasonal variation of NDVI 189 

The number of passages of the satellite in dates without clouds in year 2021 was the 190 

double than in year 2020 (Table 1). The total mean of the NDVI index of the whole olive 191 

orchard showed value of 0.4, with a small increase (0.08) between the years. The NDVI 192 

index presented a large variation within each season with the lowest value representing 193 

only 40-42% of the maximum. 194 

Table 1. NDVI index values calculated for the dates with good weather conditions and main varia- 195 
tions during the two vegetative period of the years 2020 and 2021. Means not differing statistically. 196 

Year Number of observations Minimum Maximum Range Mean 

2020 14 0.28 0.66 0.38 0.40 ± 0.12 

2021 29 0.33 0.81 0.48 0.48 ± 0.13 

 197 

Each of the two years in March the NDVI started from values between 0.65 and 0.80 198 

decreasing progressively and then climbing again at higher values in October. From the 199 

curve in Figure 3 is possible to notice that the NDVI presented quite steady values along 200 

the summertime in both years. 201 

 202 
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Figure 3. NDVI index calculated in each date with clear sky during the olive vegetative season of 204 
both year 2020 and 2021 for the super intensive orchard located in Marina di Grosseto, Italy. Each 205 
point represents the averaged index of the 830 total measured areas covering the whole 8 ha orchard. 206 
The bar representing ± standard deviation.  207 
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Taken into account exclusively the NDVI mean values within the whole orchard dur- 208 

ing the summer, it was possible to find five and eight dates of useful observations in 2020 209 

and 2021, respectively. The values of the index during this period of time presented a 210 

range equal to 0.08 and 0.02 (in 2020 and 2021, respectively) with an increase of the mean 211 

index of the orchard equal to 0.09 (from 0.31 to 0.40).  212 

 213 

Table 2. NDVI index values calculated for the dates with good weather conditions and main vari- 214 
ations during the period July 17-September 5 of the years 2020 and 2021. Means differing p = 0.01 215 

Year Number of observations Minimum Maximum Range Mean 

2020 5 0.28 0.36 0.08 0.31 ± 0.03 

2021 8 0.39 0.41 0.02 0.40 ± 0.01 

 216 

We use the NDVI data of this steady period to classify the 830 area units covering the 217 

orchard in classes based on the range of the index mean (Table 3). The frequency distribu- 218 

tion follows a normal shape (Figure 4 a), slightly asymmetric toward the higher values of 219 

NDVI since 212 areas presented NDVI index above the average while 116 of them had 220 

values of the index below the average.  221 

Table 3. Subdivision of the 830 area unit covering the whole olive orchard located in Marina di 222 
Grosseto in five different classes based on the NDVI index averaged during the steady period July 223 
17-September 5 of the year 2021 224 

Class Number Mean NDVI NDVI Range 

1 11 0.506 ± 0.02 0.56 ÷ 0.49 

2 201 0.443 ± 0.02 0.48 ÷ 0.42 

3 502 0.389 ± 0.02 0.42 ÷ 0.36 

4 106 0.334 ± 0.02 0.35 ÷ 0.29 

5 10 0.256 ± 0.02 0.28 ÷ 0.22 

Total 830 0.39 ± 0.04 0.22 ÷ 0.56 

 225 
The visualization of the areas colored in relation to the NDVI range simplified as 226 

below and above the average is presented in Figure 4 b. This map simply underlines the 227 

portions of the orchard with best or worst vegetative condition and was used to select the 228 

plants for the destructive sampling. 229 

 230 

 231 

  
(a) (b) 

Figure 4. Distribution of NDVI index of 830 area points covering the whole super intensive hedgerow 232 
orchard into 5 classes (a) and visualization on the map of the simplified zonation based on NDVI 233 
index below the average (plants with low vegetation - L - yellow) in the average (plants with middle 234 
vegetation - M - green) and above the average (plants with high vegetation - H - dark green).  235 
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3.2. Direct LAI estimation 236 

Destructive sampling data and measurements of areas and weights of the collected 237 

leaves are listed in Table 4. The mean LAI estimated for the three groups of plants scored 238 

on the base of the vegetative condition was respectively 1.90, 3.46 and 4.45, for low (L), 239 

middle (M) and high (H) vegetation, respectively (Figure 5). ANOVA showed significant 240 

differences among the NDVI groups on LAI (p=0.001) with an interaction with the height 241 

of the samples (p = 0.027). The L plants presenting less LAI at 1.5 m from the ground re- 242 

spect to 1.0 while M and H presented an increase of LAI passing from 1.0 to 1.5 m height.  243 

Table 4. Anova results (probability level) and the average values for parameters (volume, area 244 
of the sampled leaves, total leaf area and LAI) obtained by destructive sampling of canopy 245 
portion selected by a 25 × 25 cm metallic frame (interceptor) inserted into nine olive plants. 246 
Plants are divided in three groups on the base of their NDVI group: Low, Medium, and High. 247 

 248 

Figure 5 - Box plot of the data grouped by the combinations of the levels 249 
of the NDVI groups and the height of sampling. 250 

 251 

 252 
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3.3. Indirect LAI estimation 253 

The measures taken with LaiPen on the same plants before the destructive sampling 254 

are exposed in Table 5. The acquisition of the data was very fast to guarantee any change 255 

in the reference irradiance. Transmittance below the canopy was affected by both the veg- 256 

etative grouping of the plants (L, M or H, p = 0.000) and by the height of measurement (p 257 

= 0.040). In particular, when measuring ALAI in olive plants with low vegetation the trans- 258 

mittance at 1.5 m from the ground was deeply affected by gaps in the canopies (Table S2, 259 

L1, 1.5 m).  260 

We use the transmittance data obtained by the LaiPen  261 

1) to calculate LAI as indicated by the instrument producer:  262 

LAI = -ln(I/I0)/k  263 

where I is the irradiance measured by LaiPen sensor below the plant canopy, I0 the refer- 264 

ence irradiance measured in clear open area, k the radiation extinction coefficient; 265 

2) to determine the covariance between this and the LAI earlier estimated by destructive 266 

sampling at 0.5 or 1.0 m from the soil.  267 

As possible to notice in Figure 6 plotting of LAI destructive vs LAI estimated by LaiPen 268 

changes in relation to the height to which the measurement was taken. Although R2 is 269 

higher in (a), the original dataset of LAI estimated by LaiPen is poorly distributed with 270 

five plants grouped in the central area of the graphics. A better distribution is obtained 271 

when considering the data recorded and the LAI calculated at 1.0 m from the soil (Figure 272 

6b). By indirect LAI estimation is possible to explain 80% of the variation in LAI estimated 273 

by destructive sampling and the best fit is obtained when applying a k = 0.37 while other 274 

figures worsen this fitting. 275 

  

(a) (b) 

Figure 6. Plot of the linear regression between LAI estimated by destructive sample and LAI esti- 276 
mated by LaiPen at 0.5 m (a) and at 1.0 m (b) height from the ground. 277 

The result of the single LaiPen measurement of absorbance in sixty positions of the 278 

orchard characterized by increasing value of NDVI is reported in Figure 7. As is possible 279 

to notice there is no correlation between the two sets (r= -0.006). This result can be ex- 280 

plained by the fact that the instrument must be localized for measurement close to each 281 

canopy of the plant and although the care in positioning a single reading made for a single 282 

plant can be representative of the vegetational situation of the plant itself but not of the 283 

entire plot to which that plant belongs to. 284 
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 285 

Figure 7. Plot of NDVI data of 60 selected positions (blue dots) within a hedgerow olive grove in 286 
Marina di Grosseto compared to LaiPen absorbance data (green dots) recorded as single meas- 287 
urement within each correspondent 10 × 10 m spot. 288 

The result of the measurement taken by LaiPen in two plots with different vegetative 289 

status determined by the NDVI index of the area indicated a great difference in the ab- 290 

sorbance. The mean absorbance measured on the plants within the two plots with NDVI 291 

equal to 0.28 and 0.43 showed respectively value of 0.16±0.12 and 0.60±0.24. The large 292 

standard deviation of the data indicates also a large variation among the plants belonging 293 

to the same 10 × 10 m plot. Using the transmittance measured for each plant by the appli- 294 

cation of the formula reported into Figure 6 (b) we estimated the LAI of thirty-six olives 295 

and produced the result graphically exposed in Figure 8. Since the circles are proportional 296 

to the estimated LAI the differences among plants within each plot is clearly shown.  297 

Figure 8. The circles represent the LAI estimated from transmittance measured by the LaiPen instru- 298 
ment in thirty-six olive plants. The area of each  circle is proportional to the LAI of the plants con- 299 
tained into a 10 × 10 m portion of the grove. The NDVI values of these two selected positions are 300 
equal to 0.28 (a), 0.36 (b) and 0.43 (c). The mean estimated LAI are respectively 0.5±0.4 in (a), 1.5±0.6 301 
(b) and 2.9±1.5 in (c).  302 

 303 

304 

 (c)  (b)  (a) 
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4. Discussion 305 

Vegetative condition within the olive orchard in Marina di Grosseto represents a 306 

good picture of the olive plant growth in similar Mediterranean climate and soils. There 307 

are several spots with plant presenting the maximum level of vegetative growth other 308 

suffering for the extremely poor soil water retention due to high percentage of sand. The 309 

wide difference in NDVI index within the orchard represent the agronomical range be- 310 

tween poor and favorable vegetative condition of olive plant in hedgerow plantation in 311 

Mediterranean areas and can be of general application. The decrease of the NDVI index 312 

along the spring season is easily explained by olive orchard management and practice 313 

applied in the studied area. Each plant at a spacing of 4 × 1.6 m has theoretically 6.4 square 314 

meters at its disposition for the canopy grow but since this is periodically hedged by ma- 315 

chinery the width can reach a maximum occupation of 90-100 cm from the canopy center 316 

with an average total width of 1.8 m. When calculating the NDVI index of a 10 × 10 m 317 

pixel by RS only 45-50 % of the reflectance is due to the olive canopy while the rest is due 318 

to the soil. In traditional olive cultivation in this area the soil within the olives if kept with 319 

natural plant coverage in winter and only in late spring the soil is tilled to reduce compe- 320 

tition between herbaceous plants and olives. Only during the long and dry summer, the 321 

space between each row is completely deprived from weeds/plants and this explains the 322 

steadiness of the NDVI index which is mainly due to the olive plants with the growth 323 

reduced by high temperatures.  324 

Since the plant were not pruned during the period considered by this experimenta- 325 

tion, the mean increase of NDVI index recorded in 2021 (Figure 3) could be associated in 326 

our opinion to an effective change in the thickness of the hedgerow caused by the annual 327 

growth of the lateral shoots. The mean annual increase of the NDVI index within the 328 

whole orchard between 2020 and 2021 was equal to 0.09 and as showed in table 3 this 329 

value, although seems low, it is close to the differences calculated among the classes in 330 

which the orchard was subdivided (0.06). The results of direct LAI estimation by destruc- 331 

tive sampling, essential to validate RS data [23] shows data in the range between 1.6 and 332 

4.8. Cermak et al [24] working with old olive trees in south Italy found values between 1 333 

to 7 with a mean of 3.5 while while Gucci et al [25] measured a LAI equal to 2.8 in ten 334 

years old plants located in the same area. Kang et al. [14] reported that LAI, although 335 

statistically well related to remotely sensed vegetation indices, is crop-specific and there- 336 

fore it is the need of ground validation. In modelling study conducted in the area [26] 337 

showed that both olive volume and biomass could be inferred from the diameter of the 338 

trunk but the latter did not correlate with LAI. The LAI measure by LaiPen showed high 339 

correlation with the LAI by destructive samples opening interesting applicative uses. As 340 

stated by [27] the extinction coefficient (k) is estimated from shape orientation and posi- 341 

tion of each element of vegetation canopy and usually close to 0.5 [15] then LAI must be 342 

further corrected by proportion of woody elements surface area (WAI). Stenberg et al. [28] 343 

working with coniferous trees corrected on the base of clumping of needles within shoots. 344 

The olive trees trained as hedgerow also present the internal volume of the canopy occu- 345 

pied by a high number of shoots (Figure 2b) but we found that the k value to best fit the 346 

destructive LAI in this type of plantation was equal to 0.37. Using this parameter in the 347 

formula for LAI estimation by LaiPen transmittance measured in the 400 - 500 nm bands 348 

was possible to explain 78% of variation in LAI estimated by canopy sampling. This in- 349 

strument can be further tuned to better investigate olive canopy gaps following pruning 350 

or agronomical intervention because seems to better discriminate among plants compared 351 

to data produced by RS. While this latter gives good indication of the worst and best con- 352 

dition within the olive hedgerow and can be used to mapping olive orchard the on-ground 353 

measurement is more selective within each zone. This proximity instrument can collect 354 

data in presence of green coverage of the soil, cloudy condition of the sky and can be 355 

applied to better understand small variation in leaf clumping and gaps within the canopy 356 

volume not estimable from RS indices calculated from azimuthal position. 357 
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5. Conclusions 358 

In this paper a method based on NDVI index is proposed to study the vegetative 359 

status of hedgerow olive orchards and to produce maps of vegetative vigor to be used in 360 

precision agriculture. For the first time the application of light transmittance data meas- 361 

ured in proximity of the plant with a fast reading instrument is proposed as a method for 362 

canopy vegetative density estimation. This paves the road to the use of this kind of instru- 363 

ment mounted over unmanned ground vehicles in automated determination of LAI for 364 

agronomical purposes in hedgerow olive orchard which will be the further goal of our 365 

research group. 366 

6. Patents 367 

Patent pending for the new canopy interceptor handmade to carry on this study. 368 
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Appendix A 388 

Since any information was available about the use of the LaiPen on olive trees a pre- 389 

liminary experiment was set up to understand the possible use of this instrument for the 390 

estimation of light interception by the canopy during the day. Six different olive plants 391 

were selected on the base of their vegetative status determined by visual observation as 392 

“fair” (presence of gaps in the vegetation within the hedgerow) or “good” (no gaps visible 393 

in the vegetation and presence of leaves within the whole canopy volume). Five different 394 

points were selected for each of the three trees with fair or good vegetative status. The 395 

points were identified by inserting 5 canes on the soil at 30 cm from the lateral limit of the 396 

vegetation on the opposite side of the insolation. The five canes emerged 100 cm from the 397 

soil and were positioned at a regular distance among them along the lateral side of each 398 

canopy: in correspondence of the main trunk, 50 and 100 cm from it in opposite directions. 399 

In a sunny day of July 23 of the year 2021 the instrument was positioned in each extremity 400 

of the canes and the readings taken at 5 timing of the day: 10:00, 11:00, 12:00 am and 2 pm. 401 

Each time external PAR and ALAI were taken as reference to compare to PAR and ALAI 402 

transmittance measured in each selected point of the canopy. The correlation between 403 

ALAI transmittance and PAR was relatively low r = 0.376 and only 14% of variation in 404 

ALAI was explained by a variation in PAR along the day of the experiment confirming a 405 

good stability of this parameter. ANOVA analysis of experimental data (table A1) using 406 

as source of variation the quantity of vegetation, the point of measurement and the time 407 

of the day showed that the transmittance was not statistically affected by the timing of 408 

measurement or the different point within each canopy while a high significant effect was 409 

due to the vegetative status. By the results of this preliminary experiment we decided that 410 

a fast, reliable way of measuring the transmittance would have been to take a single read- 411 

ing at different height from the soil 30 cm from the lateral dark side of the hedgerow and 412 

at 100 cm of distance from the trunk along the row to avoid the presence of large woody 413 

branches were the detachment of leaves could have also been easily done.  414 
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Table A1. Table of the three-way ANOVA applied to olive canopy transmittance values measured 416 
by LaiPen introducing as source of variation the vegetative status of the olives, the location of the 417 
instrument along the hedgerow and the time of the day.  418 

SOURCE OF VARIATION T21 (I/I0) 

Fair 0.671±0.024 

Good 0.453±0.024 

VEGETATION p= 0.000 

1 (100 cm left from the trunk)) 0.590±0.039 

2 (50 cm left from the trunk) 0.520±0.039 

3 (in line with the trunk) 0.496±0.039 

4 (50 cm right from the trunk) 0.567±0.039 

5 (100 cm right from the trunk) 0.637±0.039 

POINT p= 0.090 

10:00 0.553±0.035 

11:00 0.542±0.035 

12:00 0.525±0.035 

14:00 0.629±0.035 

TIME p= 0.158 

VEGETATION x POINT p=  0.617 

VEGETATION x TIME p=  0.911 

POINT x TIME p=  1.000 

VEGETATION x POINT x TIME p= 0.983 

1 Light transmittance below the canopy 419 

 420 
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Table A2. Irradiance measured and transmittance calculated at three different height from the 422 
ground in nine olive plants cultivated as hedgerow in Marina di Grosseto. Plants are grouped and 423 
indicated with different letters in relation to their position within zone with different vegetative 424 
vigor estimated by NDVI. Low (L), medium (M) and high (H). 425 

Plant Height Time 

Reference 

Irradiance 

(I0) 

ALAI 

Irradiance 

(I1) 

T2 (I/I0) LAI3 

L3 0.5 09:43:35 4049 1350 0,3334 2,97 

L3 1.0 09:43:43 4049 3040 0,7508 0,77 

L3 1.5 09:43:53 4049 3513 0,8676 0,38 

L1 0.5 09:46:07 4049 3551 0,8770 0,35 

L1 1.0 09:46:18 4049 3889 0,9605 0,11 

L1 1.5 09:46:28 4049 4049 1,0000 0,00 

L2 0.5 09:46:41 4049 3135 0,7743 0,69 

L2 1.0 09:46:47 4049 3538 0,8738 0,36 

L2 1.5 09:46:53 4049 3984 0,9839 0,04 

M3 0.5 09:51:06 4049 1215 0,3001 3,25 

M3 1.0 09:51:16 4049 2620 0,6471 1,18 

M3 1.5 09:51:28 4049 2777 0,6858 1,02 

M1 0.5 09:53:21 4049 1107 0,2734 3,50 

M1 1.0 09:53:27 4049 1692 0,4179 2,36 

M1 1.5 09:53:35 4049 2062 0,5093 1,82 

M2 0.5 09:55:47 4049 1035 0,2556 3,69 

M2 1.0 09:56:00 4049 944 0,2331 3,94 

M2 1.5 09:56:08 4049 2400 0,5927 1,41 

H1 0.5 09:43:06 4049 509 0,1257 5,60 

H1 1.0 09:43:12 4049 560 0,1383 5,35 

H1 1.5 09:43:25 4049 1280 0,3161 3,11 

H1 0.5 09:44:17 4049 616 0,1521 5,09 

H1 1.0 09:44:26 4049 725 0,1791 4,65 

H1 1.5 09:44:38 4049 1401 0,3460 2,87 

H3 0.5 09:54:54 4049 3096 0,7646 0,73 

H3 1.0 09:54:59 4049 1308 0,3230 3,05 

H3 1.5 09:55:10 4049 3482 0,8600 0,41 
1 Irradiance measured by LaiPen sensor at 400-500 nm, 2 Light transmittance below the canopy; 3 426 
LAI=-ln(I/I0)/k with k=0.37 427 
 428 
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